Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 11(2): uhad284, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38371641

RESUMO

N 6-methyladenosine (m6A) in eukaryotes is the most common and widespread internal modification in mRNA. The modification regulates mRNA stability, translation efficiency, and splicing, thereby fine-tuning gene regulation. In plants, m6A is dynamic and critical for various growth stages, embryonic development, morphogenesis, flowering, stress response, crop yield, and biomass. Although recent high-throughput sequencing approaches have enabled the rapid identification of m6A modification sites, the site-specific mechanism of this modification remains unclear in trees. In this review, we discuss the functional significance of m6A in trees under different stress conditions and discuss recent advancements in the quantification of m6A. Quantitative and functional insights into the dynamic aspect of m6A modification could assist researchers in engineering tree crops for better productivity and resistance to various stress conditions.

2.
Plant Physiol Biochem ; 206: 108222, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016371

RESUMO

Hydrogen cyanide has been extensively used worldwide for bud dormancy break in fruit trees, consequently enhancing fruit production via expedited cultivation, especially in areas with controlled environments or warmer regions. A novel and safety nanotechnology was developed since the hazard of hydrogen cyanide for the operators and environments, there is an urgent need for the development of novel and safety approaches to replace it to break bud dormancy for fruit trees. In current study, we have systematically explored the potential of iron oxide nanoparticles, specifically α-Fe2O3, to modulate bud dormancy in sweet cherry (Prunus avium). The synthesized iron oxide nanoparticles underwent meticulous characterization and assessment using various techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible infrared (UV-Vis) spectroscopy. Remarkably, when applied at a concentration of 10 mg L-1 alongside gibberellin (GA4+7), these iron oxide nanoparticles exhibited a substantial 57% enhancement in bud dormancy release compared to control groups, all achieved within a remarkably short time span of 4 days. Our RNA-seq analyses further unveiled that 2757 genes within the sweet cherry buds were significantly up-regulated when treated with 10 mg L-1 α-Fe2O3 nanoparticles in combination with GA, while 4748 genes related to dormancy regulation were downregulated in comparison to the control. Moreover, we discovered an array of 58 transcription factor families among the crucial differentially expressed genes (DEGs). Through hormonal quantification, we established that the increased bud burst was accompanied by a reduced concentration of abscisic acid (ABA) at 761.3 ng/g fresh weight in the iron oxide treatment group, coupled with higher levels of gibberellins (GAs) in comparison to the control. Comprehensive transcriptomic and metabolomic analyses unveiled significant alterations in hormone contents and gene expression during the bud dormancy-breaking process when α-Fe2O3 nanoparticles were combined with GA. In conclusion, our findings provide valuable insights into the intricate molecular mechanisms underlying the impact of iron oxide nanoparticles on achieving uniform bud dormancy break in sweet cherry trees.


Assuntos
Prunus avium , Prunus avium/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Cianeto de Hidrogênio/metabolismo , Flores/genética , Proteínas de Plantas/genética , Nanopartículas Magnéticas de Óxido de Ferro , Regulação da Expressão Gênica de Plantas , Dormência de Plantas
3.
Plant Cell Rep ; 42(12): 1845-1873, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37792027

RESUMO

KEY MESSAGE: This review discusses the epigenetic changes during somatic embryo (SE) development, highlights the genes and miRNAs involved in the transition of somatic cells into SEs as a result of epigenetic changes, and draws insights on biotechnological opportunities to study SE development. Somatic embryogenesis from somatic cells occurs in a series of steps. The transition of somatic cells into somatic embryos (SEs) is the most critical step under genetic and epigenetic regulations. Major regulatory genes such as SERK, WUS, BBM, FUS3/FUSA3, AGL15, and PKL, control SE steps and development by turning on and off other regulatory genes. Gene transcription profiles of somatic cells during SE development is the result of epigenetic changes, such as DNA and histone protein modifications, that control and decide the fate of SE formation. Depending on the type of somatic cells and the treatment with plant growth regulators, epigenetic changes take place dynamically. Either hypermethylation or hypomethylation of SE-related genes promotes the transition of somatic cells. For example, the reduced levels of DNA methylation of SERK and WUS promotes SE initiation. Histone modifications also promote SE induction by regulating SE-related genes in somatic cells. In addition, miRNAs contribute to the various stages of SE by regulating the expression of auxin signaling pathway genes (TIR1, AFB2, ARF6, and ARF8), transcription factors (CUC1 and CUC2), and growth-regulating factors (GRFs) involved in SE formation. These epigenetic and miRNA functions are unique and have the potential to regenerate bipolar structures from somatic cells when a pluripotent state is induced. However, an integrated overview of the key regulators involved in SE development and downstream processes is lacking. Therefore, this review discusses epigenetic modifications involved in SE development, SE-related genes and miRNAs associated with epigenetics, and common cis-regulatory elements in the promoters of SE-related genes. Finally, we highlight future biotechnological opportunities to alter epigenetic pathways using the genome editing tool and to study the transition mechanism of somatic cells.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/genética , Reguladores de Crescimento de Plantas/farmacologia , Epigênese Genética , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Técnicas de Embriogênese Somática de Plantas
4.
Plants (Basel) ; 12(19)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37836218

RESUMO

The Moso bamboo culm neck, connected with the rhizome and the shoot bud, is an important hub for connecting and transporting the aboveground and belowground systems of bamboo for the shoot bud development and rapid growth. Our previous study revealed that the culm neck generally undergoes six different developmental stages (CNS1-CNS6), according to the primary thickening growth of the underground shoot bud. However, the molecular mechanism of the culm neck development remains unknown. The present study focused on the developmental process of the CNS3-CNS5 stages, representing the early, middle, and late elongation stages, respectively. These stages are densely packed with vascular tissues and consist of epidermis, hypodermis, cortex, and ground tissue. Unlike the hollow structure of the culms, the culm necks are solid structures. As the culm neck continues to grow, the lignin deposition increases noticeably, contributing to its progressive strengthening. For the transcriptome analysis, a total of 161,160 transcripts with an average length of 2373 were obtained from these stages using both PacBio and Illumina sequencing. A total of 92.2% of the reads mapped to the Moso bamboo reference genome. Further analysis identified a total of 5524 novel genes and revealed a dynamic transcriptome. Secondary-metabolism- and transport-related genes were upregulated particularly with the growth of the culm neck. Further analysis revealed the molecular processes of lignin accumulation in the culm neck, which include differentially expressed genes (DEGs) related to cell wall loosening and remodeling and secondary metabolism. Moreover, the upregulations of transcription factors such as MYBH and RSM in the MYB family play crucial roles during critical transitions in the culm neck development, such as changes in the angle between the rhizome and the culm neck. Our new findings provide essential insights into the cellular roadmaps, transcriptional networks, and key genes involved in the culm neck development.

5.
Funct Integr Genomics ; 23(4): 298, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700098

RESUMO

Plants have evolved to adapt and grow in hot and cold climatic conditions. Some also adapt to daily and seasonal temperature changes. Epigenetic modifications play an important role in regulating plant tolerance under such conditions. DNA methylation and post-translational modifications of histone proteins influence gene expression during plant developmental stages and under stress conditions, including cold and heat stress. While short-term modifications are common, some modifications may persist and result in stress memory that can be inherited by subsequent generations. Understanding the mechanisms of epigenomes responding to stress and the factors that trigger stress memory is crucial for developing climate-resilient agriculture, but such an integrated view is currently limited. This review focuses on the plant epigenetic stress memory during cold and heat stress. It also discusses the potential of machine learning to modify stress memory through epigenetics to develop climate-resilient crops.


Assuntos
Epigênese Genética , Memória Epigenética , Temperatura Baixa , Agricultura , Resposta ao Choque Térmico/genética
6.
PLoS One ; 18(2): e0269856, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36758020

RESUMO

Effective dialogue generation for task completion is challenging to build. The task requires the response generation system to generate the responses consistent with intent and slot values, have diversity in response and be able to handle multiple domains. The response also needs to be context relevant with respect to the previous utterances in the conversation. In this paper, we build six different models containing Bi-directional Long Short Term Memory (Bi-LSTM) and Bidirectional Encoder Representations from Transformers (BERT) based encoders. To effectively generate the correct slot values, we implement a copy mechanism at the decoder side. To capture the conversation context and the current state of the conversation we introduce a simple heuristic to build a conversational knowledge graph. Using this novel algorithm we are able to capture important aspects in a conversation. This conversational knowledge-graph is then used by our response generation model to generate more relevant and consistent responses. Using this knowledge-graph we do not need the entire utterance history, rather only the last utterance to capture the conversational context. We conduct experiments showing the effectiveness of the knowledge-graph in capturing the context and generating good response. We compare these results against hierarchical-encoder-decoder models and show that the use of triples from the conversational knowledge-graph is an effective method to capture context and the user requirement. Using this knowledge-graph we show an average performance gain of 0.75 BLEU score across different models. Similar results also hold true across different manual evaluation metrics.


Assuntos
Comunicação , Reconhecimento Automatizado de Padrão , Algoritmos , Benchmarking , Fontes de Energia Elétrica
7.
Plant Cell Rep ; 42(1): 3-15, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36401648

RESUMO

KEY MESSAGE: We briefly discuss that the similarity of LTR retrotransposons to retroviruses is a great opportunity for the development of a genetic engineering tool that exploits intragenic elements in the plant genome for plant genetic improvement. Long terminal repeat (LTR) retrotransposons are very similar to retroviruses but do not have the property of being infectious. While spreading between its host cells, a retrovirus inserts a DNA copy of its genome into the cells. The ability of retroviruses to cause infection with genome integration allows genes to be delivered to cells and tissues. Retrovirus vectors are, however, only specific to animals and insects, and, thus, are not relevant to plant genetic engineering. However, the similarity of LTR retrotransposons to retroviruses is an opportunity to explore the former as a tool for genetic engineering. Although recent long-read sequencing technologies have advanced the knowledge about transposable elements (TEs), the integration of TEs is still unable either to control them or to direct them to specific genomic locations. The use of existing intragenic elements to achieve the desired genome composition is better than using artificial constructs like vectors, but it is not yet clear how to control the process. Moreover, most LTR retrotransposons are inactive and unable to produce complete proteins. They are also highly mutable. In addition, it is impossible to find a full active copy of a LTR retrotransposon out of thousands of its own copies. Theoretically, if these elements were directly controlled and turned on or off using certain epigenetic mechanisms (inducing by stress or infection), LTR retrotransposons could be a great opportunity to develop a genetic engineering tool using intragenic elements in the plant genome. In this review, the recent developments in uncovering the nature of LTR retrotransposons and the possibility of using these intragenic elements as a tool for plant genetic engineering are briefly discussed.


Assuntos
Retroelementos , Sequências Repetidas Terminais , Animais , Retroelementos/genética , Sequências Repetidas Terminais/genética , Genoma de Planta/genética , Genes de Plantas , Plantas/genética
8.
Front Plant Sci ; 13: 1075279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570899

RESUMO

Understanding plant stress memory under extreme temperatures such as cold and heat could contribute to plant development. Plants employ different types of stress memories, such as somatic, intergenerational and transgenerational, regulated by epigenetic changes such as DNA and histone modifications and microRNAs (miRNA), playing a key role in gene regulation from early development to maturity. In most cases, cold and heat stresses result in short-term epigenetic modifications that can return to baseline modification levels after stress cessation. Nevertheless, some of the modifications may be stable and passed on as stress memory, potentially allowing them to be inherited across generations, whereas some of the modifications are reactivated during sexual reproduction or embryogenesis. Several stress-related genes are involved in stress memory inheritance by turning on and off transcription profiles and epigenetic changes. Vernalization is the best example of somatic stress memory. Changes in the chromatin structure of the Flowering Locus C (FLC) gene, a MADS-box transcription factor (TF), maintain cold stress memory during mitosis. FLC expression suppresses flowering at high levels during winter; and during vernalization, B3 TFs, cold memory cis-acting element and polycomb repressive complex 1 and 2 (PRC1 and 2) silence FLC activation. In contrast, the repression of SQUAMOSA promoter-binding protein-like (SPL) TF and the activation of Heat Shock TF (HSFA2) are required for heat stress memory. However, it is still unclear how stress memory is inherited by offspring, and the integrated view of the regulatory mechanisms of stress memory and mitotic and meiotic heritable changes in plants is still scarce. Thus, in this review, we focus on the epigenetic regulation of stress memory and discuss the application of new technologies in developing epigenetic modifications to improve stress memory.

9.
Front Plant Sci ; 13: 1064847, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570931

RESUMO

Long terminal repeat retrotransposons (LTR retrotransposons) are the most abundant group of mobile genetic elements in eukaryotic genomes and are essential in organizing genomic architecture and phenotypic variations. The diverse families of retrotransposons are related to retroviruses. As retrotransposable elements are dispersed and ubiquitous, their "copy-out and paste-in" life cycle of replicative transposition leads to new genome insertions without the excision of the original element. The overall structure of retrotransposons and the domains responsible for the various phases of their replication is highly conserved in all eukaryotes. The two major superfamilies of LTR retrotransposons, Ty1/Copia and Ty3/Gypsy, are distinguished and dispersed across the chromosomes of higher plants. Members of these superfamilies can increase in copy number and are often activated by various biotic and abiotic stresses due to retrotransposition bursts. LTR retrotransposons are important drivers of species diversity and exhibit great variety in structure, size, and mechanisms of transposition, making them important putative actors in genome evolution. Additionally, LTR retrotransposons influence the gene expression patterns of adjacent genes by modulating potential small interfering RNA (siRNA) and RNA-directed DNA methylation (RdDM) pathways. Furthermore, comparative and evolutionary analysis of the most important crop genome sequences and advanced technologies have elucidated the epigenetics and structural and functional modifications driven by LTR retrotransposon during speciation. However, mechanistic insights into LTR retrotransposons remain obscure in plant development due to a lack of advancement in high throughput technologies. In this review, we focus on the key role of LTR retrotransposons response in plants during heat stress, the role of centromeric LTR retrotransposons, and the role of LTR retrotransposon markers in genome expression and evolution.

10.
Plants (Basel) ; 11(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36365380

RESUMO

Centella asiatica L., commonly known as Gotu kola, Indian pennywort, and Asiatic pennyworts, is an herbaceous perennial plant that belongs to the family Apiaceae and has long been used in the traditional medicine system. The plant is known to produce a wide range of active metabolites such as triterpenoids including asiatic acid, asiaticoside, brahmoside, and madecassic acid along with other constituents including centellose, centelloside, and madecassoside, etc., which show immense pharmacological activity. Due to its beneficial role in neuroprotection activity, the plant has been considered as a brain tonic. However, limited cultivation, poor seed viability with low germination rate, and overexploitation for decades have led to severe depletion and threatened its wild stocks. The present review aimed to provide up-to-date information on biotechnological tools applied to this endangered medicinal plant for its in vitro propagation, direct or indirect regeneration, synthetic seed production, strategies for secondary metabolite productions including different elicitors. In addition, a proposed mechanism for the biosynthesis of triterpenoids is also discussed.

11.
Front Plant Sci ; 13: 905444, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061770

RESUMO

Casuarina equisetifolia is an important tree of the forest, cultivated in tropical and subtropical regions, providing fuelwood, land reclamation, dune stabilization, paper production, and nitrogen fixation. We have developed a systematic in vitro propagation protocol in C. equisetifolia using nodal segments (NS). Murashige and Skoog (MS) medium augmented with BA (5.0 µM) and NAA (0.5 µM) gave rise to a maximum of 32.00 ± 0.31 shoots per explant (S/E) with shoot length (SL) of 3.94 ± 0.02 cm, and a maximum of 70% regeneration potential (RP) was recorded after 8 weeks of post inoculation. For root induction, in vitro derived shoots were transferred to the nutrient medium consisting of a half-strength (½) MS medium augmented with 2.5 µM NAA, which produced a maximum of 12.68 ± 0.33 roots/shoot (R/S) with 3.04 ± 0.50 cm root length (RL) in 60% of culture after 6 weeks. Micropropagated plants with healthy shoots and roots were successfully acclimatized in vermicompost + garden soil + sand (1:2:1) and a maximum survival percentage of 95.1% was recorded. NS was taken from a 6-weeks-old in vitro derived plant of C. equisetifolia for synthetic seed production, and it was reported that CaCl2 · 2H2O (100 mM) + Na2-alginate (4%) resulted in clear and uniform beads. Furthermore, the maximum conversion of synthetic seeds into plantlets occurred over a period of 4 weeks of storage at 4°C. Scanning Electron Microscopy (SEM) revealed the formation of direct shoot buds without any intermediate callus formation. In addition, the chlorophyll and carotenoid contents of the direct regenerated and mother plant were compared. Similarly, RAPD and ISSR primers were used for genetic homogeneity assessment of the direct regenerated plants, where a total of 18 and 19, respectively, clear and reproducible bands with 100% monomorphism were recorded. The developed micropropagation protocol can certainly be used for large-scale multiplication and germplasm preservation of C. equisetifolia. It will also help in meeting the growing demands of C. equisetifolia in the forest industry.

12.
Nanomaterials (Basel) ; 12(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35957097

RESUMO

Agriculture is an important sector that plays an important role in providing food to both humans and animals. In addition, this sector plays an important role in the world economy. Changes in climatic conditions and biotic and abiotic stresses cause significant damage to agricultural production around the world. Therefore, the development of sustainable agricultural techniques is becoming increasingly important keeping in view the growing population and its demands. Nanotechnology provides important tools to different industrial sectors, and nowadays, the use of nanotechnology is focused on achieving a sustainable agricultural system. Great attention has been given to the development and optimization of nanomaterials and their application in the agriculture sector to improve plant growth and development, plant health and protection and overall performance in terms of morphological and physiological activities. The present communication provides up-to-date information on nanotechnological interventions in the agriculture sector. The present review deals with nanoparticles, their types and the role of nanotechnology in plant growth, development, pathogen detection and crop protection, its role in the delivery of genetic material, plant growth regulators and agrochemicals and its role in genetic engineering. Moreover, the role of nanotechnology in stress management is also discussed. Our aim in this review is to aid researchers to learn quickly how to use plant nanotechnology for improving agricultural production.

13.
Tree Physiol ; 41(3): 491-507, 2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33079187

RESUMO

Sheath senescence is an important part of bamboo shoot development during the fast growth stage. However, no information has been reported about this distinctive process until now. Using multiple approaches, we found that sheath senescence is a complex process that occurs sequentially with chloroplast corruption, chlorophyll degradation and water loss. Reactive oxygen species (ROS), salicylic acid and abscisic acid also accumulate in the senescing sheath. Transcriptome analysis showed that NAC and WRKY transcription factors, such as NAC2 and WRKY75, as well as their possible downstream target genes, such as those involved in ROS production, proteolysis and nutrition recycling, constitute the gene network of the bamboo sheath senescence process. Furthermore, the initiation of sheath senescence might be triggered by hexokinase genes, such as HXK6, which is localized to the mitochondrion and could promote leaf senescence when overexpressed in Arabidopsis. Sheath senescence occurs after the growth decrease of the internodes, which provides assimilates. The slowing of internode growth possibly results in sugar accumulation, such as glucose, in the sheath, which finally upregulates hexokinase genes and initiates sheath senescence. These findings reveal that sheath senescence is a multilevel regulation process and has a close link to the corresponding internode growth, which provides new insights into the shoot development of bamboo during the fast growth stage.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Ácido Salicílico , Fatores de Transcrição
14.
ScientificWorldJournal ; 2020: 7284203, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061861

RESUMO

Bamboo forests are undoubtedly one of the most abundant nontimber plants on Earth and cover a wide area of tropical and subtropical regions around the world. This amazing plant has unique rapid growth and can play an important role in protecting our planet from pollution and improving the soil. Bamboo can be used as a biofuel, food, and for architecture and construction applications and plays a large role in the local economy by creating job opportunities. The aim of this paper is to review the extraordinary tropical plant bamboo by explaining the mechanisms related to the growth and strength of bamboo and identifying ways to utilize bamboo in industry, employment, climate change mitigation, and soil erosion reduction.


Assuntos
Ecologia , Ecossistema , Sasa/fisiologia , Biocombustíveis , Dióxido de Carbono/química , Oxigênio/química , Desenvolvimento Vegetal , Plantas Comestíveis , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...